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Abstract

Currently, two frameworks of causal reasoning compete: Whereas dependency theories focus

on dependencies between causes and effects, dispositional theories model causation as an interac-

tion between agents and patients endowed with intrinsic dispositions. One important finding pro-

viding a bridge between these two frameworks is that failures of causes to generate their effects

tend to be differentially attributed to agents and patients regardless of their location on either the

cause or the effect side. To model different types of error attribution, we augmented a causal

Bayes net model with separate error sources for causes and effects. In several experiments, we

tested this new model using the size of Markov violations as the empirical indicator of differential

assumptions about the sources of error. As predicted by the model, the size of Markov violations

was influenced by the location of the agents and was moderated by the causal structure and the

type of causal variables.
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1. Introduction

Research on causal reasoning has often been organized around dichotomies. An impor-

tant recent debate has centered on the differences between views focusing on the covaria-

tion between causes and effects and views focusing on mechanisms (see Waldmann &

Hagmayer, 2013; for an overview). Although there have been various attempts to recon-

cile the covariation and mechanism views under an integrated theory, for example, causal

Bayes nets (Gopnik et al., 2004; Sloman, 2005; Waldmann, 1996), there are versions of
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mechanism theories that have resisted an easy integration under covariation theories. In

particular, adherents of dispositional theories of causation (e.g., force dynamics) have

argued that these theories contradict covariation-based theories (e.g., Mumford & Anjum,

2011; Pinker, 2007; White, 2006, 2009; Wolff, 2007). In the present article, we will focus

on causal Bayes nets and dispositional theories of causation as two apparently

incompatible, independently pursued views of causal representation. We are going

to explore whether a more fruitful approach is to view these two frameworks as

complementary.

1.1. Two frameworks of causal reasoning

1.1.1. The dependency view: Causes, effects, and their dependencies
The dependency view of causation, which has been stimulated by Hume’s (1748/1977)

theory, underlies several psychological theories that otherwise greatly differ—including

associative theories (see L�opez & Shanks, 2008), covariation theories (e.g., Cheng &

Novick, 1992), power PC theory (Cheng, 1997), causal model theories (e.g., Gopnik

et al., 2004; Mayrhofer & Rothe, 2012; Rehder, 2003a,b; Sloman, 2005; Waldmann &

Holyoak, 1992; Waldmann, Holyoak, & Fratianne, 1995), or Bayesian inference theories

(Griffiths & Tenenbaum, 2005, 2009; Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008

Meder, Mayrhofer, & Waldmann, in press; for overviews see Holyoak & Cheng, 2011;

Waldmann & Hagmayer, 2013). According to dependency theories, a factor C is a cause

of its effect E if E depends upon C. Dependency has been formalized differently in the

various philosophical and psychological approaches. Probabilistic theories focus on statis-

tical dependency: Causes raise or lower the probability of their effects (Cheng, 1997;

Salmon, 1984). Interventionist theories emphasize the role of interventions that bring

about effects (Gopnik et al., 2004; Woodward, 2003). Finally, counterfactual theories

describe an event C as a cause of E when it holds that if C had not occurred, E would

not have occurred (Lewis, 1973). All these approaches share the view that causes are

difference makers and that causal relations are fundamentally about dependency.

Currently, the most popular versions of dependency theories are causal model or causal

Bayes net theories, which are not restricted to single cause–effect relations but can model

complex networks of interconnected causal events (Gopnik et al., 2004; Pearl, 2000;

Spirtes, Glymour, & Scheines, 1993; Spohn, 2012; Waldmann & Martignon, 1998). The

basic entities of causal Bayes nets are nodes that code variables—such as the presence or

absence of events, properties, or facts—and arrows that code causal dependencies

between the directly linked variables (for an example, see Fig. 1).

Although the notion of dependency is at the core of all dependency theories, different

theories assign different roles to observed dependencies. Whereas older probabilistic and

associative theories claim that statistical dependency is all there is to causality, more

recent accounts try to bridge the gap between statistical dependency and mechanism

knowledge. According to these approaches, the observed statistical dependencies (i.e.,

covariations) are indicators of hidden causal powers and mechanisms (e.g., Cheng, 1997).

Pearl (2000) aptly called causal arrows mechanism placeholders.
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Various psychological experiments have lent support to the view that everyday causal

reasoning can be fruitfully modeled as reasoning with causal Bayes nets (see Rottman &

Hastie, 2014; Waldmann & Hagmayer, 2013; for overviews). However, despite many

successful applications of dependency theories, in particular causal Bayes nets, some

recent results have cast doubts on the plausibility of some of the key assumptions under-

lying these models. A number of researchers have started to study the plausibility of the

Markov condition, which is a central assumption underlying Bayes nets. According to the

Markov condition, each variable conditioned upon its direct causes is independent of all

other variables except its direct and indirect effects. In philosophy, there has been a

debate about the validity of the Markov condition. Cartwright (2007) argued that our cau-

sal knowledge is rife with Markov violations and, therefore, concluded that Bayes nets

do not adequately express causal knowledge. Hausman and Woodward (1999, 2004),

however, claimed that Cartwright’s examples of Markov violations can be handled by

adding hidden variables to the Bayes net representations. Thus, although a causal model

containing only observed variables might exhibit Markov violations, the full model

enriched with hidden variables honors the Markov condition and explains the observed

Markov violation. The computational model we will introduce below will demonstrate

this property.

A number of psychological studies have also shown that people tend to violate the

Markov condition. For example, in some experiments of Rehder and Burnett (2005), sub-

jects were presented with common-cause models (see Fig. 1) and were asked to rate the

conditional probability of one of the effects given the state of its cause C. The crucial

manipulation was whether other collateral effects of C were also present or absent.

According to the Markov condition, participants’ ratings should be invariant across these

conditions. Contrary to this prediction, the ratings were clearly sensitive to the states of

the other effects of C. The more collateral effects were present, the higher the ratings of

the conditional probability of the target effect given the presence of C. Thus, the results

indicated that subjects did not represent the instructed common-cause model in the

intended way (as displayed in Fig. 1).

Similar results were obtained by Walsh and Sloman (2007): In one of their experi-

ments, for example, they presented a cover story in which C represents the playing of

E1

C

E3E2

Fig. 1. An example of a simple common-cause structure with a cause variable C and three effect variables,

E1, E2, and E3.
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loud music in an apartment building, E1 the effect that the left neighbors complain, and

E2 the effect that the right neighbors complain. As in Rehder and Burnett’s (2005) stud-

ies, the target question was about the likelihood of, for example, E2 given that C is pres-

ent. Without any further explanations, there was a tendency to violate the Markov

condition: The likelihood of E2 given C was rated higher when E1 was present than when

it was absent. Walsh and Sloman explained this finding by assuming that subjects tried to

generate explanations of the unexpected pattern with a present cause and one missing

effect. They argued that there was a tendency to explain such a pattern with a common

disabling condition that affects both effects. For example, subjects might have explained

the fact that the left neighbors did not complain by assuming that the tenant who was

playing the music had invited all neighbors to a party. This common disabling condition

would explain the Markov violation. Walsh and Sloman tested this assumption by running

conditions in which they suggested disablers that were restricted to only one effect (e.g.,

the left neighbors did not complain because they were not staying in their apartment

building at this time). In this case, it was observed that the likelihood ratings regarding

the right neighbors were less affected by the status of the left neighbors. Thus, the previ-

ously observed Markov violation was diminished.

Although it has been demonstrated that Markov violations of this kind are the rule

rather than the exception in causal inference tasks, none of the psychological researchers

has questioned the general usefulness of Bayes nets as a tool for modeling causal cogni-

tion (see Rottman & Hastie, 2014). Therefore, in line with the proposal of Hausman and

Woodward (1999, 2004), the researchers augmented the causal Bayes net representation.

However, the empirical results also make clear that the usual assumption that people

directly adopt the instructed causal model needs to be revised. The results suggest that

people bring world knowledge to the task that suggests the addition of hidden variables,

which would explain the apparent Markov violation.

It is fairly plausible to assume that with real-world scenarios experimental subjects do not

always stick to the instructions provided in the cover stories but tend to augment the

instructed model with additional hidden variables coding their background knowledge about

mechanisms. In some cases, the instructed cover stories draw from elaborate prior knowledge

suggesting fairly specific additional variables (e.g., Walsh & Sloman, 2007; see also Park &

Sloman, 2013). There are other cases, however, in which it is less clear where additional

background assumptions come from. For example, Rehder and Burnett (2005) found similar

patterns of Markov violations as in the real-world cases with tasks in which only abstract cau-

sal variables were used (labeled A, B, C, and D). In fact, it has proven nearly impossible to

get inferences in the Rehder/Burnett paradigm that do not exhibit Markov violations.

These findings create a puzzle. Why should an abstract cover story that simply labels

the variables with letters and does not mention additional hidden variables generate simi-

lar Markov violations as real-world scenarios in which possible common disablers are

explicitly mentioned in the instruction or can easily be recruited from background knowl-

edge? Would it not be plausible, at least in the case of abstract cover stories, that people

accept, for example, the common-cause model that has been presented to them? We will

return to this puzzle below.
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1.1.2. The dispositional view: Agents, patients, and force dynamics
A completely different view answers the question why an observed lawfulness holds

by focusing on the participants involved in a causal interaction, for example, Ball A and

Ball B in Michotte’s (1963) task, or aspirin and a person with a headache in a medical

scenario. Dispositional theories of causation would say, for example, that the ingestion of

Aspirin relieves headaches because aspirin has an intrinsic property, a disposition (or

capacity, potentiality, power) to relieve headaches in suitable organisms, that interacts

with the disposition of human bodies to be influenced by aspirin. According to this view,

dependency relations are secondary; they arise as a product of the interplay of causal par-

ticipants that are endowed with specific dispositions.

There is a huge philosophical and linguistic literature devoted to the question of how

dispositions should be semantically analyzed and how dispositional ascriptions relate to

categorical properties of objects or substances, which we cannot discuss here (see, for

example, Kistler & Gnassounou, 2007; Mumford, 2003; Mumford & Anjum, 2011;

Spohn, 2012; Talmy, 1988). In psychology, which is our focus, one variant of disposi-

tional theories, force dynamics, has become increasingly popular in recent years. Pinker

(2007) argued that force dynamics is a major competitor of Bayes net theories because it

allows us to model intuitions about the generational processes underlying observed cova-

riations. Force dynamics has been initially developed and empirically tested in linguistics

in the context of verb semantics (see Levin & Rappaport Hovav, 2005; Riemer, 2010;

Talmy, 1988). Its concepts can be traced back to Aristotle, who explained efficient causa-

tion as a consequence of the interaction of two entities, an agent and a patient. An agent

is, according to Aristotle, a substance operating on another substance, the patient, which

is passive with respect to the process of operation and sometimes resists the agent’s influ-

ence. The agent, which acts upon the patient, therefore, has the disposition, capacity, or
power to act; and the patient has the disposition to be acted upon.

Within psychology, White (2006, 2009), who focuses on perceptual causation, and

Wolff (2007; see also Wolff, Barbey, & Hausknecht, 2010) have adopted and developed

variants of force dynamics. Because we do not investigate perceptual causation in this

article, we concentrate here on Wolff’s theory. The primary aim of Wolff’s force theory

is to elucidate our understanding of abstract causal concepts, such as cause, prevent,
enable, and despite (see also Wolff, 2012; Wolff & Song, 2003; Wolff et al., 2010).

Force theory states that people evaluate configurations of forces attached to agents (affec-

tors in Wolff’s terminology) and patients with respect to an endstate. Forces can be phys-

ical, psychological (e.g., intentions), or social (e.g., peer pressure). Agent–patient
interactions, then, are analyzed in terms of three components: (a) the prior tendency of a

patient toward the endstate, (b) the concordance between agent and patient, and (c)

whether the endstate is reached or not. The states of these three components determine

people’s conceptualization of causal scenarios. For instance, the sentence “The wind

moved the boat to the harbor” would be construed as an example of cause because the

agent (wind) exerts a force on the patient (boat) that overcomes the patient’s prior ten-

dency (standing still) and because the patient reaches the endstate (harbor). Similar analy-

ses can be offered for other abstract causal concepts, such as prevent, enable, or despite.
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One limitation of the current implementation of force theory is that it is restricted to

modeling semantic intuitions about interactions between one agent and one patient (but

see Wolff et al., 2010, for an extension to chains of interactions). Obviously, people can

also reason about more complex causal models, such as common-cause or common-effect

models. Moreover, causal knowledge allows us to make various specific inferences that

are presently not captured by force dynamics: We form expectations about future events

and explanations of present events (i.e., predictive and diagnostic inferences), or think

about what might have happened (i.e., counterfactual inferences) and about people’s

accountability (i.e., blame/responsibility attributions).

1.2. The interaction of dispositional intuitions and dependency models

Although dependency models and dispositional theories have been claimed to be com-

petitors, our brief review has demonstrated that both accounts may have weaknesses and

strengths that seem complementary. Both frameworks address different aspects of causal

relations and different causal relata. Dependency theories connect variables that refer to

the presence and absence of events or facts. By contrast, dispositional theories start with

an analysis of the objects that are potentially involved in causal interactions. The objects

may have dispositional properties that, when placed in the right context, can give rise to

the causal dependencies between events modeled by dependency theories. For example,

an aspirin pill in a bottle is not a cause of anything—but due to its chemical properties, it

has the potential of curing headache when swallowed by a patient having the right physi-

ological properties guaranteeing the drug’s success. Whereas dependency theories might

model this situation as the presence of the event “swallowing aspirin” (i.e., cause) leading

to a “relieve of headache” (i.e., effect), dispositional theories start with analyzing the

characteristics of the causal participants (e.g., aspirin pills, the human body), which have

the potential to generate a specific observable causal relation between events.

The strict separation between dispositional theories and dependency theories in the lit-

erature has prevented researchers from thinking about possible interactions between these

two frameworks. For example, research within the dependency framework has largely

neglected the powerful role of linguistic instructions conveyed in the cover stories. Typi-

cally, researchers fiddled with their cover story until it served the intended goal while

they forgot that there is actually an extensive literature about the semantics of causal

verbs and other linguistic expressions used to convey causal intuitions.

Our main claim in the present article is that abstract dispositional intuitions (e.g., about

agency), in part conveyed by linguistic expressions, may guide the formation of causal

models when specific world knowledge about mechanisms is not available or vague. The

link between the formation of causal models and dispositional intuitions may also explain

why Rehder and Burnett (2005) found Markov violations even with abstract scenarios.

Our semantic intuitions about causal expressions may bias us toward augmenting the

instructed causal model even when only abstract descriptions of causal relations are

provided.
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One attractive feature of dispositional theories and force dynamics in particular is that

these theories are capable of expressing abstract intuitions about mechanisms without nec-

essarily requiring specific mechanism knowledge. World knowledge will, of course, be

used if it is available (as, for instance, in Walsh & Sloman, 2007). But sometimes, we

may only understand that one entity is an agent and the other a patient without having

further knowledge about the mechanisms connecting these entities. Recent studies about

mechanism knowledge showed that subjects, unless they are domain experts, are typically

quite na€ıve about mechanisms, even for objects they encounter every day (e.g., cars, TV;

see Keil, 2012; Rozenblit & Keil, 2002). Consequently, force dynamics and related theo-

ries do generally not model scientific knowledge but rather vague intuitions about abstract

properties of causal objects. These intuitions may even contradict physical theories, such

as Newtonian mechanics (White, 2009).

1.2.1. Agents and causes: Two distinguishable causal concepts
Within dependency theories, a cause is an event (or fact) whose presence makes a dif-

ference with respect to the presence of another event (or fact), the effect. Thus, the effect

variable is dependent on the cause variable. By contrast, dispositional theories distinguish

between agents and patients, which refer to the causal participants (i.e., objects or enti-

ties) in a causal interaction. In the majority of cases, causes describe events in which

agents are involved, and effects refer to events in which patients take part (e.g., White,

2006). Not surprisingly, cover stories used in the literature often describe scenarios in

which causes and agents are confounded, for example: medicine causing headache (e.g.,

Buehner, Cheng, & Clifford, 2003), food causing allergies (e.g., Shanks & Darby, 1998),

chemicals or radiation causing the expression of genes or diseases (e.g., Griffiths &

Tenenbaum, 2005; Perales, Catena, & Maldonado, 2004), or fertilizers causing plants to

bloom (e.g., Lien & Cheng, 2000). Although all these cover stories were used to test

dependency models, the putative cause (e.g., medicine, food, chemicals, fertilizer) is actu-

ally an object (or a substance)—the agent—serving as a semantic shortcut to the relevant

cause event: the agent’s interaction with an (often implicit) patient.

Although cause events typically involve agents and effect events patients, there are situ-

ations in which this mapping is reversed (see Fig. 2). For example, consider a situation in

which a pedestrian stops when facing a red traffic light. In this case, many people will

view the pedestrian as the agent: She perceives the red light and then decides to stop.

However, an outside observer focusing on dependency relations sees a situation in which

the light controls the behavior of the pedestrian: Intervening in the traffic light changes the

behavior of the pedestrian, but intervening in the pedestrian does not influence the traffic

light. Clearly, the dependency relation goes from traffic light (cause) to the stopping of the

pedestrian (effect), although the pedestrian is conceived as the agent in this situation.

In (psycho) linguistics, these kinds of reversals have been studied in the context of the

semantic analysis of psychological verbs (psych verbs; see Brown & Fish, 1983; Landau,

2010; Pinker, 1991; Rudolph & F€orsterling, 1997; Semin & Fiedler, 1988, 1991). Psych

verbs present a puzzle for linguistics because they often reverse the usual mappings

between causal roles and grammatical categories (see Landau, 2010). In “Peter frightens

R. Mayrhofer, M. R. Waldmann / Cognitive Science 39 (2015) 71



Mary,” Peter, the subject of the sentence, plays the role of the agent and Mary the role of

the patient. But in the context of psych verbs, the agent can be located in the grammatical

accusative object role (e.g., “Mary fears Peter”). For the present purposes, the crucial fea-

ture of psych verbs is that they often describe scenarios in which the agent is involved in

an effect-related event. In, for example, “Bill listens to Joe,” Bill, the experiencer, plays

the active role (i.e., agent). However, within a causal dependency model, Bill’s acquired

knowledge would be represented as an effect of what Joe had said. Joe’s speech is part

of the cause event because it is happening temporally prior to Bill’s acquisition of knowl-

edge and is its necessary precondition. Other examples of such verbs, which do not nec-

essarily have to refer to an animate agent, are perceive, read, receive, and detect.
So far, we have described the agent and patient roles as belonging either to the cause

or to the effect side. However, the psycholinguistic literature has shown that the assign-

ment is not always clear-cut. For example, in a situation in which a teacher tries to con-

vey knowledge to her pupils, both sides may be viewed as partially active. Both the

teacher and the student need to actively intend the successful outcome of the transaction.

Dowty (1991) proposed that the agent and patient classification is not based on defini-

tional criteria; agency rather is a family resemblance concept (see also Mayrhofer &

Waldmann, 2013, for examples involving perceptual causality). According to Dowty’s

theory, both the agent and the patient roles are assigned based on a number of criteria. In

Dowty’s theory, the agent features include (among others) (a) volitional involvement in

the event or state, (b) sentience (and/or perception), and (c) causing an event or change

of state in another participant. The patient features include (among others) (a) undergoes

change of state, and (b) causally affected by another participant. This theory also allows

to model ambiguous cases in which agency is distributed across different participants.

1.2.2. The role of responsibility and error attribution in causal inferences
So far, we have argued that agents and causes are distinguishable concepts. In the

following section, we will show how agency intuitions may interact with dependency

Agent Pa ent 

C E 

Pa ent Agent 

C E 

(A)

(B)

Fig. 2. A single cause–effect relation with (A) the agent role attached to the cause event (C) and (B) the

agent role attached to the effect event (E).
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knowledge and how this interaction can help us explain Markov violations that pose a

problem for causal Bayes net theories.

In causal relations, we typically expect that the effect will happen when the cause is

present (see Goldvarg & Johnson-Laird, 2001; Mayrhofer & Waldmann, 2011). This is a

case of a successful instantiation of a causal relation in which the agent succeeds in pro-

ducing the effect when interacting with the patient. However, there are also unsuccessful

instantiations in which the cause is present but the effect is absent. In this case, the

agent’s interaction with the patient does not generate the to-be-expected result. Settings

in which violations of the Markov condition can be observed generally involve such

unsuccessful instantiations of causal relations: As discussed above, expectations about a

target effect’s presence (given the cause is present) usually are lowered, the more other

effects of the same cause are observed to be absent (Rehder & Burnett, 2005; Walsh &

Sloman, 2007; see also Mayrhofer, Goodman, Waldmann, & Tenenbaum, 2008). Interest-

ingly, in all the cover stories used to test whether subjects honor the Markov condition,

the agents were part of the cause event.

Our key empirical hypothesis is that the size of Markov violations is moderated by the

location of the agents and patients within the causal dependency relations. We expect lar-

ger Markov violations in common-cause models when an agent is involved in the cause

event (as in previous research) than when it is involved in the effect events. The main

reason for this prediction is that in cases in which causes fail to generate their effects,

responsibility for this failure is differentially attributed to the agent and the patients

involved in the causal relations. How, then, is responsibility assigned in successful and

unsuccessful causal transmissions?

For the successful case, previous research indicates that agents are typically held more

responsible for the success than patients. For example, White (2006) looked at cases in

perceptual scenarios in which agents were involved in the cause event and patients in

the effect event. He found what he called “causal asymmetry”: The agent’s contribution

to the success (i.e., effect is present) is typically overestimated relative to the contribu-

tion of the patient. For instance, in Michotte-like physical interactions between two

balls, more force is attributed to the launching than to the launched ball (White, 2007).

Additional evidence comes from a number of studies on moral reasoning: For example,

Cushman (2008) showed that human agents tend to be blamed for negative outcomes

when there is a strong causal relation between act and outcome. However, introducing

several agents causing the outcome weakens responsibility attributions to the agent (Ger-

stenberg & Lagnado, 2010; Lagnado & Channon, 2008; Woolfolk, Doris, & Darley,

2006).

How about the unsuccessful cases? Responsibility attributions in cases of causal fail-

ure are more ambiguous: In a situation in which an agent interacts with a patient,

either the agent force turns out to be too weak to affect the patient, or the resistance

of the patient is too strong for the agent. As in the case of a successful causal interac-

tion, responsibility attribution is here a consequence of a relational assessment. It

depends on assumptions about the variability of the agent relative to the patient force

in a set of causal events. In the absence of prior knowledge about the causal scenario,
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we expect that agents, which tend to be held accountable for successful causal

interactions, are also primarily held accountable for the occasional failure. But obvi-

ously, these intuitions might also be influenced by real-world knowledge. Moreover, the

possibility of distributing agency across different causal participants, which we men-

tioned in the context of Dowty’s (1991) theory, also may influence responsibility

assessments. In this case, both interacting participants might be held responsible for the

failed causal transmission.

How can responsibility attributions explain Markov violations in human causal infer-

ences? As described above, subjects in experiments studying Markov violations are typi-

cally requested to judge the likelihood of a target effect’s presence when its cause is

present while the presence or absence of the other collateral effects is systematically

manipulated (i.e., common-cause model; see Fig. 1). According to the Markov condition,

the rating should only depend upon the state of the cause but should be independent of

the states of the collateral effects. However, the ratings typically decrease the more col-

lateral effects are absent. If in such a common-cause model the cause event is associated

with the agent (as in previous research), the agent will mainly be held responsible for

these unsuccessful outcomes. This should lead to the expectation that all effect events

dependent on the same agent should also be affected by its current deficit. Under the

assumption that the patients are of the same type, we expect that all effect events should

be affected by the agent’s deficit to an equal extent. Thus, lowered ratings and, therefore,

a substantial Markov violation is predicted in this case. However, if the cover story or

subjects’ prior knowledge suggests different types of patients, a more complex version of

the model incorporating category knowledge can be developed (see Mayrhofer et al.,

2008, for such a case).

By contrast, if the effect events are instead primarily viewed as involving different

agents (interacting with the patient involved in the cause event), a failure within a spe-

cific cause–effect relation should less likely be generalized to the other cause–effect rela-
tions that involve different, independently operating agents. Unless there is a reason to

assume a hidden common cause affecting all operating agents at once, it seems plausible

that failures of individual agents are caused by unknown internal mechanisms that do not

affect the workings of other agents. This assumption of independence of the agents

should lead to a sizable reduction of the Markov violation.

1.3. A Bayes net account of error attribution

One of our main goals is to show how dispositional intuitions about agents and

patients can be mapped onto causal model representations that allow reasoners to make

inferences within complex networks. We have implemented our hypothesis of differen-

tial error attribution to agents versus patients using a causal Bayes net representation

(see also Rehder & Burnett, 2005; for a related model). In the case of Markov viola-

tions, our key claim is that differential assignments of agents and patients to the cause

and effect events lead to different attributions of responsibility for observed failure (i.e.,

cause is present but effect is absent). Standard Bayes nets are ill equipped to express
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these differential responsibility attributions because they typically collapse all the

sources of errors for each cause–effect pair into the single corresponding causal strength

parameter. The causal strength parameter, wC, expresses the probability of the cause

producing its effect (in the hypothetical absence of alternative causes; see Cheng, 1997;

Griffiths & Tenenbaum, 2005) and, therefore, explains why in the nondeterministic case

(i.e., wC < 1) occasionally the cause co-occurs with the absence of its effect. Causal

strength by itself is not sensitive to the location of the error. In complex causal Bayes

nets, each causal relation has its own causal strength parameter, and all links are

thought to be independent of each other (due to the Markov condition). Thus, if some-

thing goes wrong in one relation, this failure will not affect the other relations involv-

ing the same cause event.

To account for differential error attributions, we conceptually augmented the network

by separating two sources of failure: one tied to the participant involved in the cause

event (FC) and one tied to the participant involved in the effect event (FE; see Fig. 3A).

We propose, therefore, that each cause C contains an independent hidden preventive node

FC that is connected to all of the cause’s effects (see Fig. 3C) and that can therefore alter

the influence of the cause on its different effects at once. This preventive node is an

abstract representation of anything that may go wrong with the causal participant

involved in the cause event. When the error node is active, it decreases the power of C to

bring about its effects. Importantly, the FC node is linked to all effects generated by the
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Fig. 3. (A) A causal relation with two sources of failure, a cause-related error node FC and an effect-related

error node FE; (B) a simplified version with the influences of FE collapsed into the causal strength parameter

wC; (C) a simple common-cause structure with the common preventive cause-related error node FC; and (D)

an extended causal-chain model with two indirect causes (C1, C2), a direct cause (C3), and a terminal effect

(E) with each cause having its own preventive cause-related error node (FC1, FC2, FC3).
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cause. Thus, if there is an error on the cause side, all effects of this cause will be affected

proportional to the causal strength of the relations that link the FC node to the different

effects. By contrast, the sources of failure on the effect side (FE) are specific to each

effect and, therefore, independent of each other. If anything goes wrong on the effect

side, then only the specific effect will be prevented, but not the other effects within the

network.

In Fig. 3A, nodes and arrows for both cause-related (FC) and effect-related (FE)

errors are drawn. However, given that for our simulations we used standard causal

models with probabilistic causal strength parameters, we simplified the representation

by reserving the probabilistic strength parameters wC linking causes and effects to

express both causal strength and effect errors (FE; see Fig. 3B). The causal strength

parameters (or more specifically, their deviation from being 1), then, summarize all

unobserved additional influences that may be caused by unknown external events, by

unknown internal mechanisms inherent in the causal participant involved in the effect

event, or by other influences that specifically target the effect event. By contrast, the

preventive node FC, being linked to all effects of a target cause, represents all cause-

based sources of failure (see Fig. 3C). An alternative representation, which would make

similar predictions for our cases, would be a quasideterministic network in which all

causal links are deterministic with the base rates of added deterministic inhibitors

explaining the observed probabilistic relations (see Buchanan, Tenenbaum, & Sobel,

2010, for such an approach).

To implement our hypothesis of differential error attribution to agents and patients, we

manipulated the strength distributions of the different sources of error: The strength of

the hidden preventer FC is (relatively) higher when the agent role is assigned to the cause

event than when it is assigned to the effect event. Our error attribution hypothesis only

makes relational predictions so that altering the preventive strength of the FC node suf-

fices to generate different relational patterns. (Note that the model can easily be parame-

terized to handle cases in which the agent and patient assignments are more ambiguous

or in which additional cues shift assessments of the relative strength of the force and

resistance of agents and patients.)

In the following sections, we will present our model more formally and will show

how the introduction of the common preventive error node FC affects predictive judg-

ments in different causal structures that we tested in the experiments presented below.

We will start with a demonstration that agency assignment does not matter for probabi-

listic inferences in single cause–effect relations. Then, we are going to apply the model

to common-cause and to causal-chain structures to derive empirically testable predic-

tions.

1.3.1. Single cause–effect relations
Given a single cause–effect relation, predictive or diagnostic inferences are not

affected by the introduction of the added preventer FC. As FC is unobserved, it will be

integrated out. For a simple predictive query, that is, inferring the state of the effect E
given the state of its cause C, we therefore get the following equations:
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PðE ¼ 1jCÞ ¼
X

FC

PðE ¼ 1jC;FCÞPðFCjCÞ

¼
X

FC

PðE ¼ 1jC;FCÞPðFCÞ
ð1Þ

The second step is possible because, in this special case, the inference about the vari-

able FC does neither depend on C (because FC and C are independent of each other) nor

on E (because E is not known; it is the target of the predictive inference). Because only

the cause C and its effect E are involved in this inference, this model makes the same

predictions as a version without FC. We, therefore, predict that agency intuitions do not

influence predictive reasoning about single causal relations (given that everything else is

held constant). This prediction was tested in Experiment 1.

1.3.2. Common-cause models
As discussed above, models with and without FC do, however, make different predic-

tions in common-cause structures with a single cause C and n effects E1, . . . , En (see

Fig. 1 for an example with n = 3). According to the Markov condition, a predictive infer-

ence from cause C to its nth effect En is independent of all other effects E1, . . . , En-1:

PðEn ¼ 1jC;E1; . . . ;En�1Þ ¼ PðEn ¼ 1jCÞ ð2Þ

By contrast, in our postulated representation of common-cause models, there is one

single joint FC node attached to the effects of the common cause (see Fig. 3C). Thus:

PðEn ¼ 1jC;E1; . . . ;En�1Þ
¼

X

FC

PðEn ¼ 1jC;FC;E1; . . . ;En�1ÞPðFCjC;E1; . . . ;En�1Þ

¼
X

FC

PðEn ¼ 1jC;FCÞPðFCjC;E1; . . . ;En�1Þ
ð3Þ

The second simplifying step in this derivation is possible because in the network with

FC the Markov condition holds again: Given C and FC, the target effect En is indepen-

dent of its collateral effects. Thus, reasoning within this model can be conceived of as a

two-step process: First, based upon the states of the observable variables C and E1, . . .,
En-1, the state of FC is inferred; this instantiation of the augmented model is then used to

infer En.

The crucial difference to the single-link version is that the inference about the pre-

venter FC does depend on the states of all effects of the respective cause. The model pre-

dicts that inferences about the presence of an unobserved target effect En are influenced

by the number of collateral effects that are present or absent (as this is the crucial manip-

ulation in the paradigm of Rehder & Burnett, 2005). Absent collateral effects lower (via

FC) the ratings for the target effect proportional to their number. This influence is higher
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when the agent role is assigned to the cause side (relative strength of FC is high; see

above) than when the agent role is assigned to the effect side (relative strength of FC is

low).

In Fig. 4A, the predictions of the model are shown for a set of causal parameters (base

rate of effects 0.33 and causal strength 0.75)1 and an instantiation of a causal Bayes net

in which a binary cause C is either present or absent. We assume that the cause only

exerts an influence on its effects when present but not when absent (we call this the 0/1

case), as this is the usual implementation of causal dependency in causal reasoning tasks

based upon Cheng’s (1997) analysis. When the cause is present (the upper set of lines),

the influence of collateral effects is highest in the case of a strong FC (i.e., agent role

assignment to the cause side) in contrast to a weak FC (i.e., agent role assignment to the

effects side). When the cause is absent, however, no such pattern is observed because

the effects are only influenced by background factors (i.e., the inference is determined by

the base rates of the effects). These predictions were tested in Experiment 2.

The model allows us to make further testable predictions for common-cause structures.

Usually, the variables representing causes and effects are binary with the two states

coding either absent or present events (0/1 case). In some cover stories, however, the

variables are coded as representing two alternative values (i.e., A/B case). Thus, both

states of the cause are causally active with respect to the different states of the effect

variable (as, e.g., in the cover stories used by Rehder & Burnett, 2005). In this case, two

different causal relations are expressed for the different states of the cause variable; both,

therefore, should be affected by the location of agents and patients (see Fig. 4B). This

prediction was tested in Experiment 3.

Our model accounts for Markov violations by adding a hidden preventive node FC for

each cause. There is an alternative modeling strategy that does not require the addition of

nodes, however. Given that the instructions about causal strength are typically vague in
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Fig. 4. Model predictions for inferences in a common-cause structure with three effects for (A) a binary

cause that is either present or absent (0/1 case) and for (B) a case in which both states of the cause are caus-

ally active (A/B case).
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the Rehder/Burnett paradigm, it can be argued that the observation of specific causal

failures may be viewed as indicative of relatively weak causal strength of a specific

cause. This inference might be generalized to the other equivalent effects of the cause in

a hierarchical Bayesian model. Thus, such mutual adjustments of causal strength in a

common-cause structure may lead to inferences that appear like Markov violations. How-

ever, such a model cannot explain the role of the location of agents and patients in

predicting the size of Markov violations, the main focus of our research. Therefore, we

propose a model without this hierarchical parameter learning mechanism.2

1.3.3. Causal-chain models
Our model can be applied to causal chains as well. Causal chains are causal structures

that are also very interesting with respect to the Markov condition. In a causal chain, a

target effect E is preceded by a chain of causes C1, . . ., Cn such that each event only

depends on the respective predecessor in the chain. According to the Markov condition, a

predictive inference from the cause directly preceding E, Cn, to E does not depend upon

the states of the variables in the chain prior to Cn (i.e., the indirect causes of E: C1, . . .,
Cn-1). In our model, preventive nodes are attached to each individual cause (see Fig. 3D).

As in the single-link case, the strength of each FC in the chain does, therefore, not bias

people’s inferences about the states of the other variables:

PðEn ¼ 1jC1;C2; . . .;CnÞ
¼

X

FC1
;...;FCn

PðEn ¼ 1jC1; . . .;Cn;FC1
; . . .;FCn

Þ�

PðFC1
; . . .;FCn

jC1; . . .;CnÞ ¼
X

FCn

PðEn ¼ 1jCn;FCn
Þ � PðFCn

Þ
ð4Þ

Thus, when making an inference from a direct cause Cn to its effect E, it should not

matter whether the agent role is assigned to Cn or to E. Consequently, our model predicts

that in causal-chain structures indirect causes do not affect inferences about the target

relation at the end of the chain regardless of the location of the agent or patient within

this causal relation—a prediction that was tested in Experiment 4. Of course, this analysis

only applies to chains in which there are only direct causal links between adjacent events.

More complex temporally ordered structures with indirect or interactive relations or with

additional hidden causal events would require a different model.

2. Experimental paradigm

2.1. General cover story

To test our hypothesis that Markov violations are sensitive to the location of agents

and patients because of differential error attributions, we chose a scenario in which
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agency can be manipulated independently of the dependency relation. We used cover

stories adapted from Steyvers, Tenenbaum, Wagenmakers, and Blum (2003), who investi-

gated people’s ability to infer causal structure from covariation information. Steyvers and

colleagues presented subjects with fictional scenarios about alien mind readers. For exam-

ple, participants were told that there are three aliens that might be able to read the

thoughts of the other aliens; the task, then, was to identify the aliens capable of mind

reading given a set of thought configurations. We selected the cover story about mind-

reading aliens to minimize real-world knowledge about mechanisms.

To disentangle the roles of causes and agents (see Fig. 2), we modified this cover

story. In general, we kept the roles of cause and effect constant across different condi-

tions. One alien, the cause, was described as having a specific thought that causes

thoughts in effect aliens. Given that the thought of the cause alien temporally precedes

the thoughts of the effect aliens, the direction of the causal arrow within a dependency

model is clear. This intuition can also be substantiated by considering what would happen

if an external intervention either changed the thought of the cause or of the effect aliens.

Only in the former case, the thought of the complementary alien would also be affected.

To manipulate the dispositional roles of causes and effects, we used different verbs

describing the underlying causal mechanism. In one condition, the cause alien was

described as being capable of sending its thoughts (sender condition). This verb should

establish the cause alien as the agent and the effect aliens as patients in a successful cau-

sal transmission (see Fig. 2A). In this case, we expected that the agent that attempts to

transmit its thought into the effect alien should to a substantial extent be held responsible

for both success and failure of its attempts. In the contrasting condition, the effect aliens

were described as being capable of reading the thoughts of the cause alien (reader condi-

tion). In this condition, the effect aliens should be viewed as the agents and the cause

alien as the patient. A plausible intuition in this case is that the mind reader picks up the

thoughts of the cause alien without this alien even being aware of the existence of a cau-

sal transmission (and thus exerting no resistance). Thus, this should be a clear case in

which the agent (the mind reader), which is located on the effect side, should be held

fully responsible for both success and failure of the causal transmissions.

2.2. Causal structures

According to our model, dispositional intuitions about the location of agents and

patients guide the structuring and parameterization of a causal Bayes net augmented by

hidden preventive nodes. More specifically, the hypothesis is that differential assignments

of the agent and patient roles to causal events should, due to differences in error attribu-

tions, lead to predictable differences in causal inferences depending upon the causal struc-

tures in question. We, therefore, tested our model in five studies that varied the structural

properties of the causal scenario, such as the type of causal variables or how the variables

are related to each other.

In the first study, we investigated whether intuitions about agency can be dissociated

from the cause–effect dependency relation (Experiment 1a) and whether responsibility is
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differentially assigned depending on the locations of agent and patient within an

otherwise identical causal dependency relation (Experiment 1b). Then, we tested the

predictions of our hybrid model for common-cause scenarios with causes that either vary

between present and absent (Experiment 2) or between two causally active states (A/B

case; Experiment 3). Finally, we tested the prediction that the location of the agent should

not matter for predictive inferences within a causal chain (Experiment 4).

3. Experiments 1a and 1b

The aim of Experiments 1a and 1b was to test whether people differentiate between

dispositional roles (i.e., agent, patient) and causal dependency (i.e., cause, effect). In

many causal scenarios, cause events involve agents so that it may be the case that people

routinely conflate agents and causes. In the two experiments, we presented subjects with

a single causal relation in which a specific thought (about food) of an alien A tends to be

transmitted to alien B. Thus, except for rare cases in which alien B happens to think of

food by itself, the thought of alien B is causally dependent on the thought of alien A.

From the perspective of dependency theories, the thought of alien A clearly is the cause

and the thought of alien B the effect. In our experiments, this causal relation was kept

constant across conditions, whereas the assignment of agent and patient roles was manip-

ulated by either describing A as being capable of sending thoughts to B or B as being

capable of reading the thoughts of A.

To test whether subjects have correct intuitions about the direction of causal depen-

dency independent of the agent role assignment, we used a hypothetical intervention

question in Experiment 1a. According to dependency theories, including causal Bayes

nets, causal relations are asymmetric. Interventions in causes generate or prevent effects,

whereas interventions in effects do not affect their causes (Pearl, 2000; Sloman, 2005;

Waldmann & Hagmayer, 2005). Thus, a hypothetical manipulation of alien A’s thoughts

should have consequences for the thoughts of alien B but not vice versa if subjects invari-

antly view alien A as being involved in the cause event independent of whether alien A

or alien B is assigned the agent role.

Experiment 1b used the same cover story as Experiment 1a but a different test ques-

tion. In this study, we directly tested our hypothesis that subjects attribute responsibility

differently in the sender and reader conditions.

3.1. Method

3.1.1. Participants and design
Two hundred and forty subjects (133 female; mean age 37.36 years) were recruited via

an online database in the United Kingdom and compensated with an online voucher

worth £ 0.50. Sixty-nine additional subjects were excluded from the analysis because they

failed to pass a very simple logical transitivity task presented at the end of the experi-

ment. We used this test to identify subjects who did not pay sufficient attention to the
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task. Subjects were randomly assigned to one of four (Experiment 1a) or two (Experiment

1b) between-subjects conditions (n = 40).

3.1.2. Procedure and materials
The experiments were run as Web experiments using a tool for online studies (www.

uni-park.de). In the instructions, subjects were told about two aliens, Gonz and Murks. It

was pointed out that alien B, called Murks, often thinks of POR (indicated by a bubble

containing POR) when alien A, called Gonz, thinks of POR (i.e., high causal strength)

and that alien B occasionally thinks of POR for other reasons (i.e., a low but positive

base rate). According to the instructions, POR refers to food in alien language. In the sen-

der condition, subjects were told that alien A is capable of sending its POR thoughts to

alien B. In the contrasting reader condition, subjects were told that alien B is able to read

the POR thoughts of alien A. These instructions were explained in greater detail using

the four possible combinations of aliens A and B thinking of POR or nothing. Up to this

point, the instructions were identical in both experiments.

Then, in Experiment 1a (counterfactual intervention), subjects were asked to suppose

they would have access to a mind-zapper machine that allows them to implant thoughts

into an alien’s mind (see also Steyvers et al., 2003). Furthermore, they were told to

imagine a situation in which both aliens think of nothing. Two conditions were com-

pared: In the intervention-in-A condition, subjects were asked to imagine implanting a

POR thought in A’s head and then to rate the probability of B thinking of POR

(11-point scale from 0 to 10). In the contrasting intervention-in-B condition, subjects

imagined implanting the POR thought in B’s head and then rated the probability of A

thinking of POR.

In Experiment 1b (responsibility attribution), subjects were asked to imagine a situa-

tion in which alien A thinks of POR, but alien B does not (hence, the thought transmis-

sion failed). Then, subjects were requested to indicate which of the two aliens, A or B,

“is more responsible for this outcome” (forced choice between A and B).

3.2. Results and discussion

3.2.1. Experiment 1a: Counterfactual intervention
The results are shown in Fig. 5. When subjects hypothetically intervened in A, the rat-

ings for the presence of POR thoughts in B were much higher than the ratings for POR

thoughts in A when subjects imagined intervening in B, F1,156 = 37.6, p < .001,

g2
p = .19. The agent role manipulation had no significant influence on the ratings,

F1,156 = 2.2, p = 0.14, g2
p = .01.3 As predicted, the interaction was not significant,

F1,156 = 1.2, p = .28, g2
p = .01. Thus, regardless of the agent’s involvement in the cause

event (sender condition) or effect event (reader condition), the results indicate that sub-

jects were aware of the causal dependency relation directed from cause (alien A) to effect

(alien B) in both conditions. This finding provides evidence for our assumption that in

both conditions subjects activated identical dependency intuitions despite the different

placements of the agent.
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3.2.2. Experiment 1b: Responsibility attribution
When asked to pick either alien A or alien B as responsible for a causal failure, 50%

of the subjects (20 out of 40) chose alien A (i.e., cause event) in the sender condition,

whereas in the contrasting reader condition alien A was only chosen by 17.5% of the sub-

jects (7 of 40), v21;80 = 9.45, p < .01. This finding supports the hypothesis that agents

attract error attributions. Interestingly, whereas in the reader condition choices were

clearly asymmetric, the patient (i.e., alien B) was equally held responsible for failure in

the sender condition. Apparently, subjects assumed in the sender condition that both sides

contribute to the failure of transmission. Possibly, inferences in this condition were influ-

enced by real-world analogies (e.g., radios) in which typically both sides of the transmis-

sion process can fail.

In sum, the most important finding for the following experiments is that the two condi-

tions (i.e., sender vs. reader) activated the same dependency intuitions but clearly differed

in terms of responsibility attribution. The following experiments tested the role of dispo-

sitional intuitions in more complex causal structures.

4. Experiment 2

For basic common-cause models with a single cause and several independent effects

(e.g., Fig. 1), our model predicts strong Markov violations for scenarios in which the

cause event is associated with the agent (e.g., sender condition) in contrast to scenarios in

which it is associated with the patient (e.g., reader condition). To test this prediction, we

presented subjects with instructions about four aliens, Gonz, Murks, Brxxx, and Zoohng,

which either thought of POR (food in alien language) or of nothing. The POR thoughts

of Gonz were described as probabilistically causing the POR thoughts of the three other

aliens (i.e., common-cause model; see Fig. 1). In the test phase, subjects were requested
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to rate the probability of a target effect alien thinking of POR given the thoughts of the

cause alien, Gonz, and the other two effect aliens. Thus, as in Rehder and Burnett’s

(2005) paradigm, participants implicitly judged the conditional probability P(E3|C, E1,

E2). As in Experiments 1a and 1b, we manipulated subjects’ assumptions about the loca-

tion of agents and patients: Gonz was either described as capable of sending its POR

thoughts to the three effect aliens (sender condition) or the three effect aliens were

described as capable of reading Gonz’s POR thoughts (reader condition).

4.1. Method

4.1.1. Participants and design
Sixty students (44 female; mean age 23.9 years) of the University of G€ottingen, Ger-

many, participated in exchange for candy and were recruited on campus. Subjects were

randomly assigned to one of two between-subjects conditions (sender vs. reader, n = 30).

4.1.2. Procedure and materials
The experiment consisted of two phases. In the instruction phase, subjects were pre-

sented with instructions about four aliens with one alien, Gonz, playing the role of a

common cause of the thoughts of the three other aliens. It was pointed out that an effect

alien often thinks of POR when Gonz thinks of POR (i.e., high causal strength) and that

an effect alien occasionally thinks of POR for other reasons (i.e., low base rate of

effects). In the sender condition, subjects were told that Gonz is able to send its POR

thoughts to Murks, Brxxx, and Zoohng. In the contrasting reader condition, subjects were

told that Murks, Brxxx, and Zoohng are able to read the POR thoughts of Gonz. These

instructions were explained in greater detail showing the four possible cases involving

two aliens thinking of POR or nothing. After reading the instructions, subjects were asked

to summarize the task to make sure that they had understood it.

In the test phase, subjects were presented with six test cases in random order (for an

example, see Fig. 6). In half of the cases, Gonz, the cause alien, thought of POR (indi-

cated by POR being written in a bubble over its head); in the other half, it thought of

nothing (indicated by an empty bubble). For each panel, subjects were asked to imagine

10 situations with the given configuration and then to judge in how many of these situa-

tions the target alien (indicated by a question mark above its head) would probably think

of POR. This way, we obtained implicit probability assessments from each subject. We

randomized across subjects which effect alien served as the target alien. Within subject,

it was also manipulated how many of the two collateral effect aliens thought of POR or

of nothing. All three possibilities—0, 1, and 2—were tested (yielding 2 9 3 = 6 within-

subject conditions).

At the end of the experiment, subjects were asked to imagine a situation in which the

cause is present, but two effects are absent (as depicted in Fig. 6). Then, we requested

subjects to express their assessment of the relative degree of responsibility of the cause

and effect aliens for this outcome by using a 5-point rating scale from �2 (the cause
alien) to +2 (the effect aliens). We added this additional question to test whether the

84 R. Mayrhofer, M. R. Waldmann / Cognitive Science 39 (2015)



findings of Experiment 1b regarding differential error attributions generalize to more

complex causal structures.

4.2. Results and discussion

The results of Experiments 2 are shown in Fig. 7 (see Fig. 4A for model predictions).

In general, the ratings were higher when the cause was present (i.e., the cause alien

thought of POR) than when the cause was absent (i.e., the alien did not think of POR),

F1,58 = 208.92, p < .001, g2
p = .78. This is in line with the instructions mentioning high

causal strength and low base rate of effects.

When the cause was present (the upper two lines in Fig. 7), a highly significant inter-

action was observed between the agency factor (reader vs. sender) and the number of col-

lateral aliens thinking of POR, F2,116 = 6.93, p < .01, g2
p = .10; the three-way interaction

across the states of the cause was also significant, F2,116 = 3.19, p < .05, g2
p = .05. This

pattern reveals the predicted influence of the agent role assignment. The highly positive

slope of the line in the sender condition (dashed line) indicates that subjects’ ratings were

strongly influenced by the collateral effects, F2,58 = 13.06, p < .001, g2
p = .31. Propor-

tional to the number of collateral aliens failing to think of POR, the ratings for the target

alien were lowered. This strong violation of the Markov condition is consistent with the

prediction that the absence of collateral effects should be in part attributed to an error on

the cause side, which should uniformly affect all effects (i.e., strong preventer FC). In

contrast, there was only a slight but not significant increase in the reader condition,

F2,58 = 1.26, p = .29, g2
p = .04, indicating minimal violations of the Markov condition.

This pattern shows that the failures of the collateral aliens to read the cause alien’s

thoughts were largely attributed to independent failures of their individual capacities and

only to a small extent to the cause alien.

When the cause was absent (the lower two lines in Fig. 7), the ratings were uniformly

low and did not differ across the sender and the reader conditions, F2,116 < 1. This is

?
Gonz

Murks Brxxx Zoohng

Fig. 6. An example of a test panel used in Experiment 2.
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consistent with the prediction of the model that in cases in which the cause is absent,

agency role assignments should not influence judgments. However, we observed a very

small, but reliable violation of independence, F2,116 = 4.93, p < .01, g2
p = .08. This find-

ing is inconsistent with the model’s prediction that effects should only be influenced by

independent background factors when the cause is absent. However, because POR

referred to food in alien language, it is possible that subjects inferred further (weak) com-

mon causes that influence food thoughts (e.g., external factors, such as the time of the

day). In addition, the observation of multiple absent effects may have led to slight mutual

adjustments of the base rate parameters. (In the modeling section, we have discussed an

analogous possibility of mutual adjustments of causal strength parameters.) Such addi-

tional mechanisms could be integrated into our model, but were not the focus of our

present research.

When asked to apportion responsibility to the aliens for the failure of the cause when

two of its effects are absent (on a scale from �2 [the cause alien] to +2 [the effect
aliens]), subjects attributed the failure slightly more to the cause alien in the sender con-

dition (M = �0.43, SD = 1.28) and substantially more to the effect aliens in the reader

condition (M = 1.3, SD = 0.7), yielding a significant difference between conditions,

t58 = 6.51, p < .001, demp = 1.68. This pattern confirms that responsibility attributions are

influenced by the location of agent and patient within the causal structure (see also

Experiment 1b).

5. Experiment 3

In Experiment 2, we tested a causal situation in which the cause event varied between

present and absent (i.e., 0/1 case). As predicted by our model, judgments were not

affected by the location of agent and patient when the cause was absent. In the present

Fig. 7. Mean ratings (and standard errors) representing the estimates of the relative number of times the tar-

get alien thinks of POR in 10 hypothetical situations (Experiment 2).

86 R. Mayrhofer, M. R. Waldmann / Cognitive Science 39 (2015)



experiment, by contrast, we tested a situation in which the cause varied between two

different present causally active values (i.e., A/B case; see also Rehder & Burnett, 2005,

for similar materials). According to our model, both values should be considered causally

effective and, hence, be subject to influences of the agency manipulation (sender vs.

reader).

5.1. Method

5.1.1. Participants and design
Fifty-six students (29 female; mean age 25.1 years) from the University of G€ottingen,

Germany, participated in exchange for candy and were recruited on the campus. Subjects

were randomly assigned to one of two between-subjects conditions (sender vs. reader,

n = 28).

5.1.2. Procedure and material
As in Experiment 2, we presented subjects with instructions about four aliens that in

this experiment had two possible different thoughts: They occasionally think of POR but

usually think of TUS (indicated by a bubble containing POR or TUS; see Fig. 8; POR

and TUS were counterbalanced across subjects). It was stated that the cause alien can

transmit both thoughts to the three effect aliens (sender condition) or that the three effect

aliens can read the thoughts of the cause alien (reader condition). Moreover, it was

pointed out that the effect aliens frequently think of POR or TUS when the cause alien

thinks of POR or TUS, respectively. Otherwise the instructions corresponded to those in

Experiment 2.

In the test phase, we presented subjects with six test panels with all the nontarget

aliens thinking of either POR or TUS (analogous to Experiment 2; see Fig. 8 for an

example). The order of test panels was randomized. As in Experiment 2, judgments of

the probability of POR thoughts of the target alien were collected for all constellations.

?
Gonz

Murks Brxxx Zoohng

Fig. 8. An example of a test panel used in Experiment 3.
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5.2. Results and discussion

The results of Experiment 3 are shown in Fig. 9 (see Fig. 4B for model predictions).

As expected, the ratings for the target effect alien thinking of POR were higher when the

cause alien thought of POR (and lower when the cause alien thought of TUS),

F1,54 = 146.05, p < .001, g2
p = .73. As predicted by the model, subjects’ judgments were

influenced by the states of collateral effects for both states of the cause: In the case of C
representing POR (the upper two lines in Fig. 9), the ratings substantially increased with

the number of effect aliens thinking of POR, F2,108 = 31.47, p < .001, g2
p = .37. Repli-

cating the findings of Experiment 2, this influence was stronger in the sender condition

than in the reader condition, yielding a significant interaction, F2,108 = 8.94, p < .001,

g2
p = .14. In the case of C representing TUS (the lower two lines in Fig. 9), the ratings

also increased proportional to the number of effect aliens thinking of POR,

F2,108 = 20.25, p < .001, g2
p = .27. Moreover, in contrast to what we observed in Experi-

ment 2 in the cases in which the cause was absent, we also got a significant interaction

when the cause alien did not think of POR (i.e., it thought of TUS), F2,108 = 4.20,

p < .05, g2
p = .07. This descriptively weaker two-way interaction in the TUS case is pre-

dicted by the model as a consequence of the low base rate of POR (see Fig. 4B). These

results provide further support for our model.

6. Experiment 4

In Experiment 4, we tested the predictions of our theory for causal chains. In this

experiment, subjects were presented with a scenario in which four aliens form a chain in

which each alien either sends thoughts to the next alien in the chain (sender condition) or
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Fig. 9. Mean ratings (and standard errors) representing the estimates of the relative number of times the tar-

get alien thinks of POR in 10 fictitious situations (Experiment 3).
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reads thoughts of the predecessor (reader condition). Unlike for common-cause structures,

our model predicts for causal chains that the agency manipulation should not make a

difference because now each cause alien carries its own preventive error node (as in the

single-link case; see also Fig. 3D).

6.1. Method

6.1.1. Participants and design
Fifty students (22 female; mean age 24.3 years) from the University of G€ottingen, Ger-

many, participated in exchange for candy and were recruited on the campus. Subjects

were randomly assigned to one of two between-subjects conditions (sender vs. reader,

n = 25).

6.1.2. Procedure and material
As in Experiment 2, we presented subjects with instructions about four aliens, which

most of the time think of nothing but sometimes think of POR (see Fig. 10, for an exam-

ple of the spatial chain configuration). To instruct a causal chain, we either pointed out

that each alien can transmit its POR thoughts to its right neighbor (sender condition) or

that each alien can read the POR thoughts of its left neighbor (reader condition). More-

over, it was stated that aliens frequently think of POR when the left neighbor (i.e., its

direct cause) also thinks of POR.

In the test phase, subjects were presented with six test panels with the nontarget aliens

thinking of POR or nothing (for an example, see Fig. 10). The order of test panels was

randomized. In all test questions, the target alien was the rightmost alien in the chain. As

in Experiments 2 and 3, subjects were asked to estimate in how many of 10 situations

the target alien would probably think of POR given the thoughts of the other aliens.

6.2. Results and discussion

The results of Experiment 4 are shown in Fig. 11. As in Experiments 2 and 3, the rat-

ings for the target effect being present were higher in the presence of its direct cause

(upper two lines in Fig. 11) than in its absence (lower two lines in Fig. 11),

F1,48 = 191.99, p < .001, g2
p = .80. The prediction that different agency assignments

?

GonzMurks Brxxx Zoohng

Fig. 10. An example of a test panel used in Experiment 4.
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within the chain (sender vs. reader) should not matter was clearly supported. In this

experiment, no interaction between agency assignment and the states of the indirect

causes was observed, neither in the presence of the direct cause of the target effect,

F2,96 < 1, nor in its absence, F2,96 < 1. The three-way interaction was also not significant,

F2,96 < 1. These results demonstrate that subjects adopted the instructed causal model

and support the assumption inherent in our model that preventive nodes coding errors on

the cause side (FC) are attached to each cause separately.

However, qualitatively very weak violations of the Markov condition in both the direct

cause’s presence (the upper two lines in Fig. 11), F2,96 = 11.77, p < .001, g2
p = .20, and

in its absence (the lower two lines in Fig. 11), F2,96 = 6.47, p < .01, g2
p = .12 were

found. Markov violations are not prima facie predicted by our model for causal chains.

However, Rehder and Burnett (2005) also found Markov violations in judgments about

causal chains. One possible explanation for the weak trends violating the Markov condi-

tion in our experiment may be that some subjects may have doubted that chain variables

fully screen off previous influences. As already discussed in the context of Experiment 2,

it is also possible that subjects inferred further common causes that influence food

thoughts (e.g., the time of the day) or mutually adjusted parameters (see Section 1.3.2,

for a discussion of such a process). However, the most important prediction of our model

that in causal chains the agency manipulation should not affect judgments was validated.

7. General discussion

According to dispositional theories (e.g., force dynamics), people classify causal partic-

ipants into agents and patients. Causal agents are active entities endowed with the dispo-

sition to influence patients. Patients have the disposition to be influenced by agents,

although they occasionally resist their influence. In contrast to dispositional theories,
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Fig. 11. Mean rating (and standard errors) of the number of times the target alien thinks of POR in 10 ficti-

tious situations (Experiment 4).
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dependency theories classify event variables into causes and effects. Although agents and

causes were often confounded in previous research, we showed that these two categories

are distinguishable. Separating causes and effects from agents and patients in our experi-

ments allowed us to show that failures of causal transmission tend to be differentially

attributed to agents and patients independent of whether they are located on the cause or

effect side.

This finding constitutes a bridge between dispositional and dependency models. We

have developed a causal Bayes net model that was augmented by separate error sources

for causes and effects. Unlike in previous models in which error rates were collectively

expressed in the causal strength parameters, the separation of different sources of error

allowed us to model attributions of responsibility to agents and patients independently of

the otherwise invariant causal dependency relations.

We tested this new hybrid model in several experiments using the size of Markov vio-

lations as an empirical indicator of differential assumptions about the sources of error. As

predicted, we found larger Markov violations in common-cause models when the cause

event involved the agent than when the agents were located on the effect side, with the

exact pattern also influenced by the type of causal variables (Experiments 2 and 3).

Another important finding, predicted by our model, was that agency assignments did not

affect predictive inferences in causal chains (Experiment 4).

One interesting question for future research concerns the precise relation between

mechanism knowledge and dispositional assumptions. In some simple cases or when sub-

jects are domain experts, explicit mechanism knowledge may be fully available. In such

cases, many subjects will use this knowledge to explain observed failures. However, more

typical cases involve situations in which people have no or only partial mechanism

knowledge (see Keil, 2012; Rozenblit & Keil, 2002). Most people know, for example,

that aspirin has a disposition to remove headaches, and some may also have partial

knowledge about the mechanisms. But many people will only know that some unknown

chemicals inside the aspirin pill are responsible for the effect, or they will be able to

name only some components of the mechanism (e.g., prostaglandins, ingestion, blood)

without being able to fully trace the mechanism. We used alien mind reading as a test

scenario to be able to study the role of abstract dispositional intuitions on causal infer-

ence independent of mechanism knowledge and expertise.

Obviously, it cannot be entirely ruled out that subjects activated intuitions based on

analogies. All causal verbs are learned in the context of real-world cases that influence

their semantic representations and may affect reasoning through analogies. People cer-

tainly have intuitions about sending and reading, but we suspect that few could elabo-

rate exact mechanisms. As for our cover stories, the capacity of an alien to send or

to read might just be represented as a dispositional placeholder for some intricate but

unknown mechanism. One reviewer suggested that some subjects may split the cause

variable into a component that represents the state of having the POR thought from a

component representing the sending event. This hypothesis is in our view equivalent

with our distinction between the presence of the cause (i.e., POR thought) and the

activation of a potential inhibitor, the common preventive error node FC, that can be

R. Mayrhofer, M. R. Waldmann / Cognitive Science 39 (2015) 91



conceived of as an abstract placeholder for different potential factors underlying a

failure of transmission on the cause side. Although our model shows that highly

abstract intuitions about such factors suffice to explain inferences, it will certainly be

interesting to further explore how different reasoners instantiate the placeholders with

specific content.

A second interesting direction for future research concerns the relation between lin-

guistic intuitions and causal reasoning (see Fausey & Boroditsky, 2010, for related

research). To test our hypothesis that people differentially hold agents and patients

accountable for causal failure, we have compared two different verbs, send and read.
These two verbs allowed us to disentangle the agent and patient roles from the cause and

effect events. We demonstrated that Markov violations almost disappeared in the reader

condition. Given that read is a psych verb, one could postulate a general regularity

between Markov violations and semantic verb categories. A clear mapping may, however,

be elusive. Reading in the context of alien mind readers seems a more one-sided process

than in the context of reading a book because people may have different intuitions about

the role of the complementary participants. The alien whose thoughts are read might be

seen as completely passive, whereas books are written with the intention to convey

knowledge to readers. The assumption that the patient exerts no resistance during mind

reading has certainly contributed to the unilateral attribution of error in the reader condi-

tions in our experiments.

To achieve a general mapping between semantics and reasoning, it may be necessary

to make finer grained semantic distinctions and to take into account additional context

factors affecting our linguistic understanding. This hunch is confirmed by research on the

implicit causality of causal verbs (see Rudolph & F€orsterling, 1997; for an overview).

For example, although the psych verb admire typically suggests that the experienced

stimulus carries the features causing admiration (i.e., B in “A admires B”), additional evi-

dence suggesting that nobody else admires B shifts causal attributions toward A (Van-

Kleeck, Hillger, & Brown, 1988).

Our research provides only an initial demonstration of how dispositional intuitions and

causal reasoning within dependency models interact. We have focused on the role of

agents and patients in error attribution to explain Markov violations in causal Bayes nets.

More research, however, is needed to explore further interactions.
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Notes

1. The qualitative pattern does not depend on the specific choice of parameters and is

completely driven by the model’s structure.

2. However, this mechanism could easily be implemented in our model.

3. The slight but nonreliable difference in ratings between agency conditions when

subjects imagined intervening in A might express slightly different beliefs in causal

strength for the instructed mechanisms (i.e., sending vs. reading).
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